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1. Introduction and summary

It has been fong timc up to
structure, sufficiently capacious to contain thos

enough room in a standard Hilbert space. An in
extensions of the standard structure. Unfortunately, so far one could hardly find a rig-

orous mathematical theorem dealing with the indefinite metric and known to the physicists.
In the present paper we start with a detailed analysis of some aspects of geometry of in-
definite-metric spaces. We do not attempt (o discuss any possible physical interpretation
of the arising structure. It should be clear from the foregoing paper that one cannot hope
to provide a physical interpretation to all the vectors. A solutionl proposed in [6] leads
to such phenomena like the dependence of averages not only on states and observables
but also on abelian algebras that contain the observables in question. A similar possibili-
ty has been discussed by Bell [2] in connection with hidden variables. That is why we
consider the results in [6] negative. On the other hand, there is no reason to demmnd all
the states to be physical and also, there is no reason to force all the relevant operators
to transform a physical subspace into itself. A mathematical theory of the spectral de-
composition of hermitian operators in indefinite-metric spaces may be thus of some in-
terest. This is the main object of the present paper-

The paper consists of five sections. In Section 11 we singled out, in 2 concise manner,
all the essential properties of general self-dual vector spaces. Section 111 deals with a very
special class of these spaces, J-spaces. Given a complex vector space X with a non-degenc-
rate, sesquilinear hermitian form (x, ) we define a subset F(X) of the set 2(X) qf z?ll
continuous, linear operators on X as follows: & hermitian and unitary operator J is in

F(X) if and only if (x, ¥);=(, ) is a Hilbert-space scalar product on X W‘f" show
that for each Je #(X), £ (X) coincides with £ (X;) as an algebra. Equipped with any
(X) consisting of at least

J-norms, £ (X) is a Banach *_glgebra. We consider the case of 5
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e important quantitics which cannot find
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two elements. This is the definition of a J-space. Tt is shown that there exists a metric d
on £ (X) such that |[x||,<exp [d(/, J)1"|}x||s, F(X) is a complete metric space. In fact,
our metric is simply related to the perturbation radius of J, J', which in our case is easily
seen to be given by ||/—J'}|;. We show that the unitary group of X acts on #(X) transi-
tively and preserves the metric. It is of some interest that # (X)) turns out to be highly non-
commutative — none two J's commute, For every pair J, J' in #(X) there exists an “‘ex-
change operator™ U(J, J')e # (X} such that U(J, JYJ=J'U{J, J). It is possible to show
that the classes of Hilbert-Schmidt and trace operators, for different J in _# (X), coincide.
The trace is J~independent. Not all the results of this section are new. We preferred, how-
ever, to express all the results in a language that scemed to be a most appropriate one
for our purpose.

In Section TV we search for necessary and sufficient conditions for a hermitian opera-
tor on a J-space to have a spectral decomposition in terms of projections (hermitian idem-
potents in 2 (X)). It is firstly shown that for every o-complete Boolean algebra # of projec-
tions there exists a Je #(X) commuting with #. In other words, # is a Boolean algebra
of J-hermitian idempotents on a Hilbert space X;. It follows that a necessary and sufficient
condition for a hermitian operator A to have a spectral decompositionis ¥ ={d€ #(X):
JA=AJ}#@. An equivalent condition is that the orbits of {exp [i47]}, on #(X) are
bounded. We call such a hermitian operator elfiptic. By the result of Wermer (based on
Mackey's idea) it is shown that the sums and products of a finitc number of commuting
elliptic operators are elliptic. The set of all elliptic operators is thus a partial algebra in
the sense of Kochen and Specker [2]). At the end of Section 4 a preliminary discussion
of unitary representations of locally compact groups on a J-space is given. A representa-
tion G=+{¥,} is irreducible if the only projections commuting with {¥,} are trivial ones.
It is shown that if ¢ is amenablc and the orhits of G on #(X) are bounded, then there
is a fixed point in #(X). In particular, it is shown that every unitary representation of a
compact group is reducible.

In Section 5 we single out some unsolved problems. The most important ane is: does
there exist a unitary, irreducible representation of the Poincaré group with generators of
transiations heing non-elliptic (or, equivalensly, with unbouded orbits of translations on
J(X))? Such a representation, in case it exists, would be very attractive from a physical

point of view. The mass-operator may have a non-trivial spectrum in an irreducible re-
presentation.

I, Sclf-dual vector spaces

In this section we give a concise review of the most important, general properties of
self-dual vector spaces. For the sake of completeness short proofs of most of the state-
ments are also included,

1ot X be a complex vector space, and let (x, ¥) be a sesquilinear, hermitian and non-
degenerate form on X
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(i) {x, ¥} is linear in y for every xe X;
(ii} (x,3)=(v.x) forall x, y in X;
(iii) (x, y)=0 for all x ¢ X implies y=0.

For every x in X, let f, be a linear form on X, defined by f.(3)=(x, ). The weak topo-
logy T, is now defined by the family of seminorms

palx)=sup [ f(x}: yeN}.
where N is any finite sequence of vectors. A sequence {Xe}e e ar Where A is a directed set
of indices, is weakly convergent to x if and only if (5, 9)—(x, p) for every y & X. By (iii)
8 limit, if exists, is unique and we write w.lim x, = in this case. All linear forms f, are
now weakly continuous by the very definition. X equipped with the weak topology is 2

locally convex, Hausdorff vector space.

ProperTY 2.1. If f is a weakly continuous linear form on X, then there exists @ unigue

x€ X such that f =f,.
Proof: See [3], Ch. IV, § 1, sec. 2, Proposition 1. D o
By the above property w¢ may identify X with its weak dual. Therefore X is said to
be a self-dua! vector space.

Deramion 2.1, A locally convex Hausdorfl topology T on X is said to be compati
ble with the scalar product provided every linear form f on X is T-continuous if and otlly
if f is weakly continuous {i.e. / =/ for some X € X).

ProperTY 2.2. If T s compatible with the scalar product then T is stronger than T..

Proof: It xi—r»x then (%, )%, ) and thus x; —%. C

Depinerion 2.2, For every subset ¢ of X, the orthogonal comp
by

Jement C~ is defined

Cl={xeX: (x, =0 VyeC}.

Clearly, € is always a weakly closed, linear subspace of X. The condition (ifi) above

is equivalent to X+ =0. L
PrROPERTY 2.3. CeD implies pteCt and C‘LJ'CDL.L" For w?yx G c=¢
and CL=CLL = If Y isa linear subspace of X, then Y 0 phe=(ra I

Proof : Straightforward, from the definition of “1”. © i
ure Y of Y is the same Jor

PROPERTY 2.4. If Y is g linear subspace of X, then the clos . il Yen
every ropology compatible with the scalar product. Y is closed ¥ and only if Y=Y

dense in X if and only if Y+ =0.
Proof: See [3], Ch. IV, §2,5ec. 3, Cor. 2. C

We shall say that a linear subspace Y is closed (withe
dense) if Y=Y*+ (resp. ¥+ =0).

ut referring 10 the topology) (resp-
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DEeFNITION 2.3, A closed linear subspace ¥ of X is called non-degenerate it Y n Y1 =0,
A non-degenerate subspace ¥ is called reguwlar if Y+ Y- =X. #(X) is the set of all
regular linear subspaces of X.

Let us observe that if ¥ is non-degenerate, then ¥+ ¥+ is dense in X. But it does not
follow that Y+ Y is closed. We also notice that a one-dimensional subspace, spanned
by some xe X is non-degenerate if and only if (x, x)7#0. It follows immediately from
the definition that ¥1e #(X) if and only if ¥ c #(X). Clearly, #(X) is a partially ordered
set (Y<Z if and only if xe ¥ implies xe Z)and Y<Z if and only if Z-<¥~-. We also
have 0 e B(X) and Xe B(X). We denote by \V Y, {resp. A Y.} a least upper bound (resp.
a greatest lower bound) for a family {¥,} of regular subspaces provided it exists in #(X).

ExAMPLE. We denote by X, , an n-dimensional complex seif-dual space with a signa-
ture m. Clearly, if n=m, then #(X, ) is a lattice. Also #(X, o) is a lattice. Let us consider
B(X;,). If ¥ and Z are two different clements of #(X, ), then either ¥ n ZL=0 or
YNZ#0. fYv Z=0 and, say, Y is two-dimensional, then ¥ v Z=X. If Y and Z
are both one-dimensional, then either ¥ v Z exists and is two-dimensional or there is no
two-dimensional regular subspace containing ¥ and Z, In the last case ¥ v Z=X. If
Y n Z#0, then either, say, Y=2Z and then Y v Z=Z or, say, Y is one-dimensional, and
then ¥ v Z=Z. Finally, ¥ and Z may be both two-dimensional. In this case ¥ v Z=X.
We conclude that #(X,,,} is a lattice.

Let us consider £ (X, ;). In a given orthogonal frame (x, ) is of the form {+, +, —, ~)-
Let 4=(1,0,0,0), b=(1,1,1,0) and ¢=(0,0,1,0) 4=(0,1,0, 1). It is easy to sce
that g, b, ¢, d are linearly independent. Let ¥, and Y, be two linear subspaces spanned
by a and b, respectively. Now ¥, and Y, are both regular. On the other hand, b—a is
orthogonal to both ¥, and Y. It follows that there is no two-dimensional regular sub-
space containing ¥, and ¥,. Since ¥, spannad by a, b, ¢ and Y, spanned by a, b, 4 are
both regular, we conclude that #(X;,) is not a lattice. A similar example can be given
for X, .

It follows that for « seif-dual space X which is at least A-dimensional (complex or real}
and contains two vectors vy, y, with (3, )= —(v;, ¥.)#£0, #(X) is not a lattice.

Let A be a linear operator defined on a dense domain D{4). We set

D(AY)={xeX: Ax*eX with (x, 4y)=(x*,y) VyeD(4)}.

It is easy to see thal A* : x—x*is a uniquely defined, linear aperator on D(A*). If D{4)
=X and A is weakly continuous, then D(4*)=X and A* is weakly continuous. It follows
that the set #(X) of all weakly continuous operators on X is a *-algebra.

PROPERTY 2.5. Let A be a linear operator with D(A)=X. Then Ae % (X) if and only
if there exists B such that (Ax, yy=(x, By) for all x,ve X. In this case, also Be £{X)
and B=A*. In particular, if A satisfies (dx, y)=(x, Ay) for all x, y in X, then Ae L{X)
and A=A*%,

FProof: See [3], Ch. IV, §4, Scc. |, Prop. 1. O

-~ o e |
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Depvrnon 2.4, Ae F(X)is said to be:

hermitian if A=A*,

unltary if AA*=A"4A=1,

a projection if A=A* =A2 and D(d)=X.

PropERTY 2.6. If E is a projection, then Y=EX is regular. Conversely, if Y€ A#(X),
then there is a unique projection E such that Y=EX. In this case Ex=x if andonly if xe ¥
and Ex=0 if and only if xe Y. We have (—-E)X=Y*+and I-Eis also a projection.

Proof: Y=EX isaclosed lincar subspace as a range of a continuous idempotent. Now,
xe Y if and only if x=Ey for some ¥ & Y, i.e. if and only if x=Ex. Since E=E*, it follows
that x¢ Y if and only if Ex=0. Forxe ¥'n YL, x=Ex=0and so ¥is non-degenerate.
Clearly, (I— E} X= Y- and thus Ye&(X). Conversely, if Ye #(X), then for every X€ X
we have x=x,+x, with x; € ¥ and x, € Y+. Let Ex X-2%:. It is easy to see that EX=¥,
E?m[ and for all x, ye X, (Ex,y)=(x, Ey). Thus F=E*e £{X). The rest of the state-

ment is obvious. O

ProperRTY 2.7, If E, Fand E+F are projections, then EF =FE=0.

Froof: let G=E+F. By G*=G we obtain EF+FE=0, of EF=—FE=—(EF)*.
On the other hand, EF=EEF=— EFE=—(EF)(EF)*. Thus (EFY* = — (EF)(EF)*=EF.
It follows that EF=(EF)*=0. 0

ProperTY 2.8. Let E, F be projections, Y=
(i)~(v) and (2)(d) are respectively equivalent:

EX and Z=FX. The following statements

i YLz (a) Y<Z,

{ii) EF=0, (b) FE=E,

(iiiy FE=0, (©) EF=E.

(v) EZ=0, (d) F-E is a projection.
vy FY=0;

Proof: We restrict ourselves to the jmplication (d)=(a) in t!?is groof. If F- I:JI=G
is a projection, then EG= GE=0 by Proposition 2.7. Now, xe ¥ implies Ex=x and s,
by ()v), Gx=0. But G=F—E and therefore Fx=X. U o .
By the properties above we may dentify the set of all projections with the set #(X)
of all regular subspaces. We shall use the same symbol Q(X) for both.
The next two properties follow directly from the definitions.

- =Y Eia
PROPERTY 2.9. If Eis..s En O7€ mutsally orthogonal projections, ther E ‘;1

projection and E= \/ Eq» O

PropErTY 2.10. Let Ee #(X) and Ae £ (X), then Y= lar, if
if AE=EAE. If ¥ is also A*-invariant, then AE=EA, In particwa,

unitary, then Y is A-invariant if

EX is A-invariant if and only
A is hermitian or

and only if AE=EA. ©
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ProPERTY 2.11. If E, Fe B(X), then P=EFec #B(X) if and only if EF=FE. In this
case, P=EAF, 5

Proof: The first part of the assertion is obvious. If P=FFe @(X), then PE=P and
PF=P.If GE=G and GF=G, then GP=G and s0 P=EAF. O

It follows from the above that @(X) is a non-trivial example of a partial Boolean
algebra in the sense of Kochen and Specker (see [7], p. 183). A complementary statement
to Property 2.11 is

ProperTY 2.12. If E, Fe Z(X), then P=E-+F—EF is in #(X) if and only if EF
=FE. In this case, P=EVvF, G

Let us now observe that for xe X with (x, x)#0, a projection onto the subspace span-
ned by x is given by

(x,
= X
{x,x)

X

Now, if Y is a non-degenerate, finite-dimensional subspace of X, then it is always possible
to span Y by a finite sequence of vectors satisfying (x,, x,)=0 if and only if i#j. A projec-
tion onto Y is then given by

x5y
xi)
It follows that every non-degenerate, finite-dimensional subsapce of X is regular.
PROPERTY 2,13, If Y is non-degenerate and Y or Y- finite-dimensional, then ¥ #(X). ©

Ey= ZE

IH. J-Spaces

This section deals with a very special, and most regular, class of self-dual vector spaces,
J-spaces, We start directly with the definition.

DeFNITION 3.1, Let X be a self-dual space and let
FX)={Je#(X): T=J*=J""and (x, y);=(x, Jy) is a Hilbert-space product on X}.

If #{X) consists of at least two different elements, then X is called a J-space. If J& #(X),
then the Hilbert space (X, (, ),> is denoted by X,. The norm in X is denoted by | |[s
and the adjoint in #(X;) by 47. We shall refer to J-topology, J-continuity, etc.

It can be easy to see that the most general J-space may be obtained in the following way:
let X, and X, be two Hilbert spaces; then the algebraic direct sum X=X, + X, equipped
with the scalar product {x, ¥)=(x,, y)—(x2, y2) is a J-space.

Remark. 1f X is a self-dual space and #(X) is empty, we have nothing to say. I #(X)
consists of exactly one element, then (x, y) is a Hilbert-space scalar product from the
very beginning, Conversely, if X is already a Hilbert space (when equipped with the (x, })

for

i
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form), then #(X)={I}. If bowever, there arc at least two different elements in J(X),
then there is at least a continuum.
PPROPERTY 3.1. For every Je F(X), LX)} and £ (X) coincide. We have
A*=JA'  and ATm]AY.

If A=A* e P(X), then A is J-hermitian if and only if 4] —JA. Conversely, if A=A’, then
A is hermitian if and only if A commutes with J. If A is unitary, then A is J-unitary if and
only if JAJ=A. Conversely, a J-unitary operator A is unitary if and only if A and J commute,
If Ee B(X), then E is a J-projection if and only if E]=JE. Conversely, if Eisa J-projecs
tion, then E € #(X) Is equivalent to JE=EJ. For every Je F(X), J is unitary and hermitian
on both X and X .

Proof: If Ae P(X), then (4x, ¥);={Ax, .ly)=(x,A'Jy)=(‘x, JAJy);. Thus Ae
e #(X,) and A’=JA*J (see Property 2.5). The converse foliows in much the same way.
The rest of the statement is simply a consequence of the relation JA'=A*J. O

Remark. Tt follows from the statement above that we have, in fact, a uniqt';c concept
of continuity for lincar operators on Y. We shall simply talk about costinuous, or
bounded operators.

PROPERTY 3.2. Z(X) equipped with any J-norm is a Banach *-algebra.

Proof: Since #(X) and £ (X)) coincide as algebras, it follows that 4¢ s IRy
is a Banach algebra. But J is unitary on X;, so

(=17l =4 ls= 1AL - o

Property 3.3. For each Je #(X), the J-iopology of X is compatible with the metric.

Proof: If f is J-continuous, then =0, x}p—-(y: Jx)-s(}'y,x}, of f=fi,- If [ 18
weakly continuous, then f(x)=(r, )=, x), and so, f is J-continuous. © ‘

Remark. By Propositions 2.4 and 3.3 we may simply talk about closed or dense jinear
subspaces of X.

Dermvrrion 3.2, In a Jspace X we define

H(X)={NeL(X): N=N*, N eLX) and (x, Nx)30 ¥xeX}.

ProrErTY 3.4, If Ne A (X), then (6, Yv=0% Ny) is a Hilbert-space sealar f’“r:“"'
on X. With Ne A (X) and J€ #(X), the iwo scalar products (%, ) and (x.y), are topo-

logically equivalent.
Proof: With Ne .4 and Je J, we have Ne £(X,)and 50
|ix] |3 =Cx, Nx)=(x, e A e LR
On the other hand, N~'¢ £ (X;) and JN is J-positive. Thus
[lcHF=(x, Nx)=(x, JNx),}HN"H]'-Hx‘i[i. o
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- PROPERTY 3.5. A (X) is @ convex subset of ¥ (X). We have conv (f (X)) <A (X).
F(X) is closed and A7(X) is open in a uniform topology of L (X). (LX) is the set of ail
hermitian elements of ¥ (X)). There exists a mapping N—Jy from N (X} fo #F(X} with
the following property: for every A€ X(X), if A commutes with N, then AJy=JA.

Praof: If N, Ny e #°(X) then (x, Nx)=m,|ixi]? with m;>0. It follows that with
N=tN,+(1—¢) N, we have (x, Nx)>ml|x!|} with m>0. Thus N is bicontinuous. Clear-
ly, conv (#(X))c #°(X) and also A4°(X) is open in L(X). If J.e #(X) and J,—J uni-
formly, then J='=J*=J and (x, Jx)>0. Thus Je #(X). Finally, let Ne A" (X) and N
= IAdE(}.) be a spectral decomposition of ¥ on X,. (It follows directly that N is hermitian
on Xy.) Now every hermitian operator on X, that commutes with ¥ is hermitian on X,
It follows that E(A) are in #(X}. Clearly O £ Sp(N). We define £, =F{0, o) and E_
=(—00,0). By E,+E_=1 and E,E_=0 it follows that Jy=E_—FE_ satisfies Jy
=15=ly ! Oun the other hand, (x, 7yx)20. It follows that Jx e #(X). Also Jy commutes
with every operator commuting with ¥. 0

Lemma 3.1, With J, J' € #(X) the following statements hold
(i) LT is positive on both X; and X ..
(i) £, JY=(J)V'? is positive on X, X, and unitary on X: we have

T IV =t(J, Iy Y=e(J, D).
(iii) t(J, J') commutes with every Ae $(X) that commutes with J and J'; we have
t(J,INFHT, IV =T,
(iv) AeSp (1, J)) if and only if A~ e Sp [t(7, T)).
(W) We have [[¢(J, D)|i=eZ, I = ||, D= ||t D|2=
=sup {{[x[/[12 : x#0}=sup fij<||3lx[|3: x#0}.

(~vi) If {x,} is an orthonormal basis for X,., then {t(J, 7Y x.} is an orthomormal basis
Jor Xy,

Proof: We have (x, JIx);=(x, F'x)=||x]|} 20 and (x, JJ'x); =(J'x, J'0),;=|| "}
0. Now, 1(J,J)=(LI}* is defined by a series, positive on X, and on X,. Let us
observe that +(J, JY*=JH(J, Sy J=J't(J,J) J' is also J- and J'-positive and satisfies

t IV, IV =, Py T =TT =2, )2,

'l:herefore, HL I =t(J, Py =uJ', J). Now, 1(7,J) J=t(J, VT IT=t(J,)J, so
(iii) holds. (iv) is an immediate consequence of #(J, Iy t=J1(J, ) J. To prove (v} we
use the formula for a norm of a positive operator on a Hilbert space:

e B =167, 2Pl =0l =sup {Gx, 2701113} = sup {ex, T}

=sup {{[[|2/]1|13} -

Eakronll I »]

L/
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On the other hand, sinee 1(J, J)? is positive on both X; and X, the J- and J'-norms
coincide and cqual to the spectral radius of JJ' (=spectral radius of J'J). Finally, let
{x,} be an orthonormal pasis for X. Since 1(J,J)) is bicontinuous, if follows that
{t(J, I x,} is total. On the other hand

(6, 'y x,, U Iy %)= (0 ) %es I, ) xg)=(xa 0 D U n*x,)
(3, I =%y, Xedp =0errs
DerintTion 3.3, The common value in (v) which colncides with the spectral radius
of JJ' is denoted by v*(J, J'). We also define
au, J)=logv(d,J).
PropErTY 3.6. For all J, €S (X), xeX and Ae Z(X), the following inequalities
hold:
(i Nxllasv s, 20 Ml il €y Iyl
Gy Hally v -l s BAllr<v', -l
(iii) v(J, J)z1 and v{J, J)y=1if and only if1=J g
Proof: (i) follows directly from Lemma 3.1 (v}, and (i) is a0 immediate consequence
of (i). (iii) foliows from Lemma 3.1(iv). o
ProperTY 3.7. d(J,J") is a meiric on F(X). We have
a(@, 1y=togQt+{y =Ml
”J"‘J”J=cxp {2d(J, -1
Proof: By Lemma 3.1 and Property 3.6 we have dJ, Jy=d(J’, H=0 and =0 iff
J=J'. We also have
v, 7y =sup {(x, I0)i(x, Iy =sup{l(x- Teyx, 7 [ 0N T ol
L sup {(xJ0)/(x, Jx)} - sup{lxs 7o, I'%) A, IV I}

r —_ "N —=1= ! '-’1
Thus d(7, J)<d(J, J ") +d( o 7). Finally, || = lls=11 A= = 1= T)

what completes the proof. O

ProperTY 3.8. The uniform and metric topologies on
bounded and metrically bounded subsets of F{X) coincide.

Proof: Straightforward from Property 3.7. B

ProPERTY 3.9. F(X)isd complete metric Space. ‘
i i ed in
Proof: Follows from Property 3.8 and the fact that FNis uniformly closed 1

£(X). o

JX) coincide. Uniformly
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ProverTY 3,10, #(X) and d are invariant under the action of the uniiary group ®(X)

of X. %(X) acts on #(X) transitively. Moreover, if J, J'c #(X), then there exists U(J, J) e
€ J(X) such that

U, JYJU@,IV*=r and UU,)VJUJ,T)=J;
U, J) is given by
U, y=e(J, NI =t(J', DNI=Jt(J , JV=Tt(J’", ]

and commutes with every Ac & (X) that commutes with hoth J and J'.
Frogf: We have

i (x, VIV*x) (V*x, JV*x) ,
d(V.IV’, Vvt V*)=% log(sup m =~];log sup (W) =d(J,J)

To prove that U(J, J)=t(J, J') J' satishies the requirements of the statement, we observe
that

t(J, VW =J(J, IN=0"T ], Jy=r(J', D=t(J', NJ
by Lemma 3.1 (jii} and the definition of 1. We thus have U/, Fy*=U(J, /') and also
(x, UL IY2)=(x, IO, FIx)=(x, (0, I )y 20 (0, ') (x, %)
It follows that U(J, J)e #(X). u
PROPERTY 3.11. If J, J'e £(X), then J and J' commute if and only if J=J'.

Proof: It J'=J'J, then t(J, J)=1(J, F)~* and by Lemma 3. (iv) it follows that
t(J, J)=1 or, JFI'=1. O

PROPERTY 3.12. The classes: F4— of compact operators, F w—of Hilbert—Schmidt

operators, and F g~ of trace operators, coincide for different J in JX). I |sis a H-F
norm for X;, then

4], <v3(, )4,
With A, Be # _, we have
(4, By, =(¢(, 1) At(J, 7Y, 1(J, ) Be(J, )y

In particular, i A and B commute with JJ', then (4, B),=(A, B)p. If Ac F,, then
Te(A);=Tr(A), for ali J, J e F(X).

Proof: Follows immediately from the properties of 7. ©

IV. Spectral decomposition for kermitian operators and related topics

We have seen in the last section that a unitary operator on X may have & purely real
spectrum. Similarly, a hermitian operator may have a purcly imaginary spectrum. It is

che

se
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clear that for such operators we cannot expect any similatity to hermitian opcrators on
a Hilbert space. On the other hand, even if the spectrum of a hermitian operator is real,
this does not suffice for the existence of a spectral decomposition. We distinguish, ix this
section, a class of hermitian operators for which a satisfactory theory of spectra] decom-
position can be developed.

Desnamiox 4.1, Let o be any subset of Z(X); then &' stands for the commutant of
& and =0 ns' In particular, 7 4 is the set of all J in # (X)) that commute with 4.
A hermitian operator A is said to be efliptic provided K70

LeMMA 4.1, Let of be a family of hermitian (resp. unitary) operators in P(X). Then
#.,#O if and only if there exists a bicontinuous operator We 2(X) and Je (X} such that
all WAW=-!, Ae s are J-hermitian (resp. Jetmitary). ‘

Proof: If # 4+ and Je F 4, thenall 4in o are hermitian (resp. unitary) on X;. Con-
versely, assume WA W~ is hermitian on X;. By the polar decomposition theorem we may
assume that W is J-positive. Then N=JW?isin 4 (X) Itis easy to see that 4 commutes
with N and so, by Property 3.5, Jy € Fa G

DEFINITION 4.2. A Boolean algebra of projections on X is a subset & of 2(X) containing
0 and 1, which is a Boolean algebra under the operations E v F= E+F-EFand EAF
= EF (in particular, # i3 commutative in L(X))- B is complete (a-complete) if for every
subset (sequence) {E,} =4, the projections V E, and A E, are in & A Boolean algebra #
is bounded if ||E}l,< M for all E ¢ # and some (equivalently: ail) J in F(X).

PROPERTY 4.1. A Boolean algebra B of projections is bounded if and only if j,#ﬂ.\

Proof: X J& $g, then |IE|i;=1 and so & is bounded- Conversely, every bounded
Boolean algebra of idempotents on a Hilbert space H# is similar 1o a Boolcan algebra of
#-hermitian projections (see {4} P- 58). The statement follows thus by Lemma 41. O

PROPERTY 4.2. Every hounded Boolean algebra of projections is contained in a complete

Boolean algebra of projections.

Proof: 1f & is bounded, then & is 2 Boolean algebra of J -projections for Je fg- NoW
the set 4 of all projections in the weak closure of # 15 8 complcte Boolean aige]"’ra;_l_’?‘;
jections on X,. On the other hand, by the property of a weak closure, We have &=
for all Eed and so 4 c #(X).2 -

ProperTY 4.3. Let # bea s-complete Boolean algebra of projections. Then Fa #? G_"d
@ is bounded. For every sequence AT (subset, if B 1S confpie.re) E= VE,1Is aprg;jzne
onto the closed linear span of (EX} gnd F= NEgis @ projection onio M(EX)
that in general (X, # N XD

Proof: By a result of Bade every 65100 e #00,X

i 7). Given J€ , Xs o
;P;;i:’;i’:t‘;l:‘d:?} .:r];ﬁg:::;vij).le § g, @ isa Boolean algebra of projections
space X;. O

mplete Boolean algebra of projection o'n 2 Banac:
is a Banach space, 50 4 is bounded.
on a Hilbert
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PROPERTY 4.4. If #, and &, are bounded and B, <&, then ¥ n ¥ 2. #9. There exists
a complete Boolean algebra of projections B that contains both #, and &, .

Proof: Follows by a result of Wermer on Boolean algebras of idempotents (see {10},
Theorem 1). o

DeFINITION 4.3. A (rcal) speciral megsure is a o-homomorphism E: 4 E(A)
from a Boolean algebra of all Borel subsets of the real line into #(X). A spectral measure
E is compact if E{A) vanishes outside some compact A,.

Propsr1Y 4.5.  Every spectral measure E is hounded and # g#D. A—E(d)x is strongly
continuous for all x in X.

Prooft Tt is sufficient to notice that the range of E is a a-complete Boolean algebra
of projections.

PropertY 4.6. Let A—E(A) be a spectral measure and let f be a continuous complex
Junction on R. If E is compact, then the integral A(f)= [ f(1) dE(A) exists in the uniform
topology of £(X) and

” ff(?-) dE(A)]Ijgfuflf(.A)l Mg ;.

If 1 is real, then A(f) is elliptic. There exists Je #(X) commuting with all A(f).
Proaf. Follows by Property 4.5 and a corresponding Hilbert-space theorem. O
ProPERTY 4.7. If A is elliptic, then there exists a unique spectral measure E such that
A= [ A1dE(2).

Prooft If Je #,, then A is Jhermitian. Its spectral resolution on X, commutes with J
and so, is a spectral measure according to Definition 4.3. 0

We have thus established a one-to-one correspondence between spectral measures and
elliptic operators in % (X). It is possible to generalize it for unbounded operators, We shall
not deal with these problems. (The reader is referred to the paper of Jalava [6a] where
a generalization of Property 4.7 is proved for the unbounded case.) Let us observe that
a simplest hermitian operator with #, empty is of the following form

Axy=(x,y)xs (x,x)=0.
A, is-a nilpotent, its spectrum consists of one point only, 1=0.

DerintTioN 4.4, A semigroup {F} of unitary operators on X is hounded if || V]| are
bounded or, equivalently, if the orbits of {F} on #(X) are bounded,

PROPERTY 4.8. With A=A*e ¥ (X), the following conditions are equivalent:
G) 4 is elliptic,

(i) {'*} is bounded,
(iii) for some (equivalently every) J e #(X), sup P[(Ad—an||,<e0.
A0

that ¥



GEOMETRY OF INDEFINITE-METRIC SPACES 275

Proof: (i) implies (ii) and (ii) is equivalent t0 (iii) by {8], Theorem 12.3.1. 1f (ii) holds,
then V=e' satisfics ||V, <M, n==1, £2, ... It follows, by a theorem due to Nagy [9]
that V is similar to a J-unitary operator. The statement follows now by Lemma 4.1. O

PROVERTY 4.8. If A, ..., A, are elliptic and commute, then ([ F 4,#9.

Proof: Follows immediately by Property 44, u

The rest of this section we devote to some remarks connected with unitary group
tepresentations on X. We assume that there is given a locally compact group G and 4 unitary
representation g— ¥, of G on X. Now, if g—V, is weakly continuous, then it is weakly con-
tinuous on each X,. Tt follows that gV, s strongly continuous (see 4], p. 57). We assume
that g— ¥, is continuous.

PROPERTY 49. If G is amenable and {V,} is bounded, then §c#9.

Proof: By [3], Theorem 3.4.1, {¥,} is similar to a group of unitary operators on Xj.
The statement follows from Lemma 4.1. O

As a corollary we obtain Phillips result [8], Theorem. 6.1

PROPERTY 4.10. If sf is an abelian *-mubalgebra of Z(X) and sup{||4ll,: de & }<o0,
then # ,+.

Proof: Clearly, the uniform closure <7 of « also satisfies the as
group of & is amenable and bounded. The statement follows by Property 49. O

LEMMA 4.2. Assume that G is compact and g=V; continuous. Then {V,} is bounded.

Proof: Suppose [|V/,,[|;— . Since G is compact, We may assume that Vo1 s“zzﬂ
and ||V, || ;- 0. Clearly, ¥po—! strongly and || Vell:=ll Vv, |y . Let uschogse 3;. ftelll, o of
X, & X such that ||x,]l;=1 and [|Vatalls > 0 BY he weak compactness of t Xeb: biraty
X,, we may assume that x, —xq weakly. Ifollows that v xoll < M: - 3 £mr%s
We have (V% ¥)y=(Va¥=: S =(xa, Voly). Now, Vady—+Jy stronglyklan Tm; . ;
weakly. Thus (x,, V;:Jy)_”(xﬂ’ _j’y).——(xo,y);- Tt follows that V%, %o weaxty.
contradiction with ||¥,X|ly—x. O

ProPERTY 4.11. If G 8 compact, then Fo#9

DErnaTION 4.5. We say that g—V, is frreducible if

subspaces) invariant under G are trivial ones : 0 or I o
unitary representation of a compact growp on

sumptions. The unitary

the only projections (or reguiar

PROPERTY 4.12. Every continuous
is reducible. . ro-
Proof: By Property 4.11, JV, =V, J for some Je £(X). But E=}(J+1) 152 P

jection. o

V. Some mmsolved problems 17 Or, more g€ nerally
9 s it trivial? Or, ’

; f the commutant of # (x)? . i

(A) What is the structure © look? In particular, what can be said about herputian

given a subset J, = ¥ (X), how does Jo
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operators commuting with two different J's? (It is easily seen that JJF'+J'J is hermitian
and commutes with J and with J'.)

(B) What are the characteristic properties that fix the form of #(J, J') and U(J, J)?
Consider a triple J, J', I € #(X). Does t{J, I} t(J', I”)=1(J, J") hold? If not, then what
can be said about Ry p o= 1(J, J) 6. J')(F", J)T It is easily seen that R, ;- , comiiies
with J. What is the behaviour of R;; . if J, J', J'=J,.

{C) What are the Banach *-algebras, which have a faithful *-representation on a J-space?
It follows directly that a Banach *-algebra with an algebraic, norm-preserving auto-
morphism « satisfying «*=1 and ||a(4*)4|[=||4|{® is such an algebra. Is it possible to
characterize all uniformly closed *-subalgebras of #(X)? It can be shown that every
positive lingar form fon % (X) vanishes on all finite-dimensional projections. If fis strongly
continuous, then f vanishes on all projections. Does it follow that f vanishes on & (X)?

(D) Classify irreducible continuous representations of the Poincaré group on X. Does
every reducible representation of this group decompose into irreducible ones? Do there
exist irreducible representations with non-elliptic generators of translations? Does every

irreducible representation of the Poincaré group have a maximal, positive, invariant
subspace ?
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